$P(n)$ degeri $n$. Fibonacci sayisini veren bir $P$ polinomu var mi?

6 beğenilme 0 beğenilmeme
75 kez görüntülendi

$P(n)$ degeri $n$. Fibonacci sayisini veren (derecesi sonlu) bir $P$ polinomu var mi?

Var ise bu polinom nedir, yok ise olamayacagini ispatlayiniz.

8, Mart, 2016 Lisans Matematik kategorisinde Sercan (22,549 puan) tarafından  soruldu

Güzel bir soru.

İpucu: $\displaystyle \lim_{n\to\infty}\frac{P(n+1)}{P(n)}$ i düşünün.

$P(n+1)=P(n)+P(n-1)$ olması gerekmiyor mu? Tümevarımla ispatlanabilmesi için polinomların katsayılarının eşit olması gerekir. Fakat eşit dereceden olacaklarından başkatsayısı $a$ olan bir $P(n)$ polinomu olsaydı $P(n+1)$ ve $P(n-1)$ polinomlarının da başkatsayısı $a$ olacak. O halde polinomların birbirine eşit olabilmesi için $2a=a$ olacak ki denklemin kökü $a=0$ olur. Başkatsayı olabilmesi için $a\neq0$ olması gerektiğine göre çelişki elde ederiz. O halde fibonacci serisinin elemanlarını veren bir $P(n)$ polinomu yoktur?! Yaklaşımım bu hocam doğruluğundan çok çürütülebileceğine inanıyorum aslında ama maksat safımız belli olsun :)

Bu da çok güzel bir çözüm.

Polinomların hızlı artmaması ama Fibonacci sayılarını üstel artıyor olmasından dolayı (http://matkafasi.com/18738/fibonacci-dizisi-icin-kapali-bir-formul?show=18738#q18738

, benim ilk olarak aklıma yazdığım çözüm geldi.

Bir an çürütüldü sandım dedim içimden bu kadar çabuk mu :) Aynen galiba polinom yok fakat üstel fonksiyon çıkma ihtimali -tabii varsa- epey yüksek.

...