$P(n)$ degeri $n$. Fibonacci sayisini veren bir $P$ polinomu var mi?

6 beğenilme 0 beğenilmeme
94 kez görüntülendi

$P(n)$ degeri $n$. Fibonacci sayisini veren (derecesi sonlu) bir $P$ polinomu var mi?

Var ise bu polinom nedir, yok ise olamayacagini ispatlayiniz.

8, Mart, 2016 Lisans Matematik kategorisinde Sercan (22,903 puan) tarafından  soruldu

Güzel bir soru.

İpucu: $\displaystyle \lim_{n\to\infty}\frac{P(n+1)}{P(n)}$ i düşünün.

$P(n+1)=P(n)+P(n-1)$ olması gerekmiyor mu? Tümevarımla ispatlanabilmesi için polinomların katsayılarının eşit olması gerekir. Fakat eşit dereceden olacaklarından başkatsayısı $a$ olan bir $P(n)$ polinomu olsaydı $P(n+1)$ ve $P(n-1)$ polinomlarının da başkatsayısı $a$ olacak. O halde polinomların birbirine eşit olabilmesi için $2a=a$ olacak ki denklemin kökü $a=0$ olur. Başkatsayı olabilmesi için $a\neq0$ olması gerektiğine göre çelişki elde ederiz. O halde fibonacci serisinin elemanlarını veren bir $P(n)$ polinomu yoktur?! Yaklaşımım bu hocam doğruluğundan çok çürütülebileceğine inanıyorum aslında ama maksat safımız belli olsun :)

Bu da çok güzel bir çözüm.

Polinomların hızlı artmaması ama Fibonacci sayılarını üstel artıyor olmasından dolayı (http://matkafasi.com/18738/fibonacci-dizisi-icin-kapali-bir-formul?show=18738#q18738

, benim ilk olarak aklıma yazdığım çözüm geldi.

Bir an çürütüldü sandım dedim içimden bu kadar çabuk mu :) Aynen galiba polinom yok fakat üstel fonksiyon çıkma ihtimali -tabii varsa- epey yüksek.

1 cevap

0 beğenilme 0 beğenilmeme

Dogan Donmez'in yorumda dedigini dusunelim. Bence gayet akillica ve bircok yerde kullanilabilinecek bir yontem. Tek sart gelecek limitin $1$ olmamasi. 

Fibonacci Dizisinin terimleri  $$F_n=\frac{[(\sqrt5+1)/2]^n-[(\sqrt5-1)/2]^n}{\sqrt5}$$ olarak yazilabilir.  Bu bilindik. (Baglanti)

Orana bakarsak $$\frac{F_{n+1}}{F_n}=\frac{[(\sqrt5+1)/2]^{n+1}-[(\sqrt5-1)/2]^{n+1}}{[(\sqrt5+1)/2]^n-[(\sqrt5-1)/2]^n}$$$$=\frac{[(\sqrt5+1)/2]-[(\sqrt5-1)/2] \cdot[(\sqrt5-1)/(\sqrt5+1)]^n}{1+ [(\sqrt5-1)/(\sqrt5+1)]^n}$$ olur.

$|(\sqrt5-1)/(\sqrt5+1)|<1$ oldugundan $$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\frac{\sqrt5+1}{2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; (\ne 1)$$ olur. 

Eger bir $P$ polinomu icin $P(n)=F_n$ her $n$ dogal sayisi icin saglansaydi $$\frac{\sqrt5+1}{2}=\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\lim_{n\to\infty}\frac{P({n+1})}{P(n)}=1$$ bize celiski verirdi. Demek ki boyle bir polinom olamazmis.

2, Ağustos, 2 Sercan (22,903 puan) tarafından  cevaplandı
2, Ağustos, 2 Sercan tarafından düzenlendi
...