$A=\{a,b,c,d\}$ kümesinde tanımlı $\beta =\left\{ \left( a,a\right) ,\left( b,b\right) ,\left( c,c\right) \right\}$ bağıntısı geçişken midir?

0 beğenilme 0 beğenilmeme
57 kez görüntülendi

$A=\{a,b,c,d\}$ kümesinde tanımlı $\beta =\left\{ \left( a,a\right) ,\left( b,b\right) ,\left( c,c\right) \right\}$ bağıntısı geçişken midir?

18, Şubat, 2016 Orta Öğretim Matematik kategorisinde misafir tarafından  soruldu
9, Haziran, 9 murad.ozkoc tarafından düzenlendi

(d,d) de olsa geçişken oluyor yanlış değilsem

geçişken diyor yanlış diyorsunuz maalesef. 

Fikri olan hocam var mı ? 

Bu tip sorulara en güzel cevabı sanıyorum @murad.ozkoc hocam verecektir.

3 Cevaplar

0 beğenilme 0 beğenilmeme

Evet geçişkendir. 

Bir bağıntıda $(a,b)$ ve $(b,c)$ elemanları için $a \sim b$ ve $b\sim c$ olduğundan $a\sim c$ ilişkisini arıyorduk.

Şimdi ilk elemanda $b$ yerine $a$ koyarsak ve elimizdeki bağıntıyı incelersek, $(a,a)$ ve $(a,a)$ elemanları için $a \sim a$ ve  $a\sim a$ olduğundan yine $a \sim a$ ilişkisi arıyoruz ve bunu $(a,a)$ elemanında buluyoruz.

18, Şubat, 2016 wertten (200 puan) tarafından  cevaplandı
0 beğenilme 0 beğenilmeme
Cevap degil de geyige baglama gibi oldu, kusura bakilmasin.


$(x,x)$'e ekleyebilecegimiz bu kumede sadece $(x,x)$ olacagindan elde edebilecegimiz $(x,x)$. Zaten ayni olmasi yerinde durmak gibi sadece duruyorsun, iki defa durunca da uc defa durunca da. $(a,b)$ ve $(b,a)$ varken istenen $a$'dan $b$'ye $b$'den de $a$'ya ziplama direk $a$ noktasinda yerinde dur. Eger $(a,b)$ ve $(b,c)$ varsa da, bu suna benzer "kulagini bole tutacagina boyle tutmak" yani elini ($a$'yi) kafanin arkasindan ($b$'den) dolandirarak kulagini ($c$'yi) tutmak yerine, direkt elinle kulagini tut, bu da  $(a,c)$ iste. $(a,b)$ ve $(c,d)$ icin isinlanma gerekir, o da bizde yok. Ayaklarimiz yere basmali. 


Aslinda bu gecisme ozelligi bizim atasozlerimizin temeli. Ayrica geciskenlik olmazsa taksimetre cok yazar.
18, Şubat, 2016 Sercan (23,698 puan) tarafından  cevaplandı
18, Şubat, 2016 Sercan tarafından düzenlendi
0 beğenilme 0 beğenilmeme

$A$ herhangi bir küme ve $\beta \subseteq A^2$ (yani $\beta , A$'da bağıntı) olmak üzere $\beta$ bağıntısının geçişken olması  $$((x,y)\in\beta \wedge (y,z)\in\beta) \Rightarrow (x,z)\in\beta$$

önermesinin doğru olması anlamına geldiğini biliyoruz yani

$$\beta \text{ geçişken}:\Leftrightarrow [((x,y)\in\beta \wedge (y,z)\in\beta) \Rightarrow (x,z)\in\beta]$$

$A=\{a,b,c,d\}$ olmak üzere $$\beta =\{(a,a),(b,b),(c,c)\}$$ bağıntısını ele alalım ve olası bütün durumları inceleyelim. Ben sadece üç durumu aşağıda irdeleyeceğim.

I. Durum: $x=y=z$ durumu.

$$[(\underset{1}{\underbrace{(x,y)\in\beta}} \wedge \underset{1}{\underbrace{(y,z)\in\beta}}) \Rightarrow \underset{1}{\underbrace{(x,z)\in\beta}}]\equiv [(1\wedge 1)\Rightarrow 1]\equiv 1$$ yani önerme doğru.

II. Durum: $x=y\neq z$ durumu.

$$[(\underset{1}{\underbrace{(x,y)\in\beta}} \wedge \underset{0}{\underbrace{(y,z)\in\beta}}) \Rightarrow \underset{0}{\underbrace{(x,z)\in\beta}}]\equiv [(1\wedge 0)\Rightarrow 0]\equiv 1$$ yani önerme doğru.

III. Durum: $x\neq y\neq z$ durumu.

$$[(\underset{0}{\underbrace{(x,y)\in\beta}} \wedge \underset{0}{\underbrace{(y,z)\in\beta}}) \Rightarrow \underset{0}{\underbrace{(x,z)\in\beta}}]\equiv [(0\wedge 0)\Rightarrow 0]\equiv 1$$ yani önerme doğru.

Yapılacak olan tüm bu mülahazalar sonucunda $\beta$ bağıntısının geçişken olduğu anlaşılacaktır.

18, Şubat, 2016 murad.ozkoc (8,849 puan) tarafından  cevaplandı
19, Şubat, 2016 murad.ozkoc tarafından düzenlendi

$x$, $y$ ve $z$'nin birbirlerine nasıl eşit olabileceğini anlamadım. Başta $A$ kümesi içinde farklı elemanlar olarak tanımlanmadılar mı? 

Haklısınız. Cevabı yeniden düzenledim.

Bu halini de anlayamadım. $(x,y)$, $\beta$ 'nın elemanı değil.

...