Her $n$ eleman $\mathbb{Z}$ icin $f(n)=n^2-n+11$ sayisi asaldir onermesi dogru mudur?

1 beğenilme 0 beğenilmeme
97 kez görüntülendi


29, Mart, 2015 Lisans Matematik kategorisinde AysegulKose (85 puan) tarafından  soruldu
29, Mart, 2015 DoganDonmez tarafından düzenlendi

1 cevap

0 beğenilme 0 beğenilmeme

Değildir. $n=11$ için $f(11)=121$ asal olmaz.

29, Mart, 2015 murad.ozkoc (9,515 puan) tarafından  cevaplandı

Ispati boyle yapsak yeterli olur mu genel bir sey yazamiyormuyuz 

Ayrica tesekkurler

Ek bilgi. Sürekli asal üreten bilinen bir formül yok.

Şöyle diyelim Formul var ama pratik olarak yararsiz.

Tamsayılarda asal değeri veren tamsayı katsayılı sabit olmayan bir polinom yoktur.

Bu ispat genelleştirilebilir. $f(n)$ sabit olmayan bir polinom olsun. $f$ polinomunun sabit katsayısı sıfırsa $n|f(n)$. Eğer sabit katsayısı $k=f(0)\neq 0$ ise her $n$ tamsayısı için $k|f(nk)$. $f(nk)$ sayıları sonsuz farklı değer alacaktır ve hepsi $k$ tarafından bölünecektir. O halde en azından bir tanesi asal değildir (aslında neredeyse hepsi).


Bu ispat $k=\pm 1$ için çalışmaz. Nasıl düzeltilebilir?

$k=f(0)=\pm1$ ise $f(0)$ asal olmaz.
...