İkili toplamda gösterge sırası değiştirme

0 beğenilme 0 beğenilmeme
45 kez görüntülendi

$i,j\in\mathbb{N}$ için $a_{ij}\in\mathbb{R}^{\geq 0}$ olmak üzere, gösteriniz ki $$\sum_{i}\sum_{j} a_{ij}=\sum_{j}\sum_{i} a_{ij}$$ eşitliği sağlanır.

---

Sonuç temel bir bilgi olduğu için lisans kategorisini seçtim ama benim bildiğim çözüm temel ölçüm kuramından (measure theory) geliyor.

---

gösterge: index

12, Ocak, 2016 Lisans Matematik kategorisinde Enis (1,075 puan) tarafından  soruldu
12, Ocak, 2016 Enis tarafından düzenlendi

1 cevap

0 beğenilme 0 beğenilmeme

$1\leq i \leq n,\quad 1\leq j \leq m$ olsun. 

$$\sum_{i=1}^n\sum_{j=1}^m a_{ij}$$

$$=\underbrace{\sum_{j=1}^m a_{1j}+\sum_{j=1}^m a_{2j}+\sum_{j=1}^m a_{3j}+...+\sum_{j=1}^m a_{nj}}_{n}$$

$$ =\underbrace{(a_{11}+a_{12}+a_{13}+...+a_{1m})}_{m}+\underbrace{(a_{21}+a_{22}+a_{23}+...+a_{2m})}_{m}+\underbrace{(a_{31}+a_{32}+a_{33}+...+a_{3m})}_{m}+...+\underbrace{(a_{n1}+a_{n2}+a_{n3}+...+a_{nm})}_{m}$$

$$=\underbrace{\underbrace{(a_{11}+a_{21}+a_{31}+...+a_{n1})}_{n}+\underbrace{(a_{12}+a_{22}+a_{32}+...+a_{n2})}_{n}+\underbrace{(a_{13}+a_{23}+a_{33}+...+a_{n3})}_{n}+...+\underbrace{(a_{1n}+a_{2n}+a_{3n}+...+a_{mn})}_{n}}_{m}$$

$$=\underbrace{\sum_{i=1}^na_{1i}+\sum_{i=1}^na_{2i}+\sum_{i=1}^na_{3i}+...+\sum_{i=1}^na_{mi}}_{m}$$

$$=\sum_{j=1}^m\sum_{i=1}^n a_{ji}$$




13, Ocak, 2016 Mehmet Toktaş (18,792 puan) tarafından  cevaplandı
...