$$\sum\limits_{n=0}^\infty\frac{x^{3n}}{(3n)!}$$ serisinin toplamını bulunuz.

3 beğenilme 0 beğenilmeme
194 kez görüntülendi
30, Ocak, 2015 Lisans Matematik kategorisinde nbatir (59 puan) tarafından  soruldu

2 Cevaplar

3 beğenilme 0 beğenilmeme
 
En İyi Cevap
Ayhan Dil in cevabı:

İlham Aliyev ile birlikte düşündüğümüz bir çözüm şöyle:

$e^{x}=\sum_{n=0}^{\infty }\frac{x^{n}}{n!}=$ $\sum_{n=0}^{\infty }\frac{x^{3n}}{
\left( 3n\right) !}$ $+\sum_{n=0}^{\infty }\frac{x^{3n+1}}{\left( 3n+1\right) !}
+$ $\sum_{n=0}^{\infty }\frac{x^{3n+2}}{\left( 3n+2\right) !} $

eşitliğinden yola çıkalım. Burada
\begin{eqnarray*}
y=\sum_{n=0}^{\infty }\frac{x^{3n+2}}{\left( 3n+2\right) !}
\end{eqnarray*}
dersek yukarıdaki eşitlik
\begin{eqnarray*}
y^{^{\prime \prime }}+y^{^{\prime }}+y=e^{x}
\end{eqnarray*}
sabit katsayılı , homojen olmayan doğrusal diferansiyel denklemine dönüşür. Bu denklemin homojen kısmının çözümü;:
\begin{eqnarray*}
e^{-\frac{1}{2}x}\left( c_{1}\cos \left( \frac{\sqrt{3}}{2}x\right)
+c_{2}\sin \left( \frac{\sqrt{3}}{2}x\right) \right)
\end{eqnarray*}
($ c_{1} $ ve $ c_{2} $ keyfi sabitler), ve bir özel çözümü;
\begin{eqnarray*}
\frac{1}{3}e^{x}
\end{eqnarray*}
dir. Başlangıç koşullarının $ y(0)=0 $ ve $ y'(0)=0 $ olduğu kolayca görülür. Buradan sabitlerin belirlenmesiyle
\begin{eqnarray*}
y=f\left( x\right) =\frac{1}{3}e^{x}-e^{-\frac{1}{2}x}\left( \frac{1}{3}\cos
\left( \frac{\sqrt{3}}{2}x\right) +\frac{1}{\sqrt{3}}\sin \left( \frac{\sqrt{
3}}{2}x\right) \right)
\end{eqnarray*}
elde edilir.
30, Ocak, 2015 DoganDonmez (3,534 puan) tarafından  cevaplandı
20, Şubat, 2015 İNAN ÜNAL tarafından seçilmiş
Latex derleyici aynı matematik oratmında birden fazla alt tire (_) görünce hata yapıyor (Metinde o kısım italik olarak görünüyor). Onları düzelttim, Fakat Türkçe karakterlerde de sorun vardı, galiba şimdi düzeldi.

Yanıtı diferansiyel denklemden kurtarmak için; $\eta$, 1'in primitif bir küpkökü olmak üzere  ilk denklem $\eta x$ ve $\eta^{2} x$ için de yazılıp üç denklem toplandığıda aynı sonuç elde edilebiliyor (ikinci ve üçüncü toplamlar sıfır olur). 

 

Şahane çözümmüş yazacaktım, yorumlarda daha da güzeli çıktı karşıma.

0 beğenilme 0 beğenilmeme

Yazı dili anlaşılmıyor, rica etsem yönetimden arkadaşlar ilgilenebilirler mi? Teşekkür ederim...

30, Ocak, 2015 temelgokce (940 puan) tarafından  cevaplandı

Maalesef ozellikle Ayhan Dil hocam, ve arada baska arkadaslarin yanitlarinda da latex kodu dogru olmasina ragmen, ve onizlemede dogru gorunmesine ragmen, sayfada dogru goruntulenmiyor.

...