$\text{Aut(E)}\to \text{Aut}(E[2])$ fonksiyonunun çekirdeği $[\pm 1]$ olur.

2 beğenilme 0 beğenilmeme
131 kez görüntülendi

Diyelim ki $E$, $K$ cismi üzerinde bir eliptik eğri (elliptic curve), $m\geq 2$ tamsayısı $K$ cisminin karakteristiği ile, eğer bu karakteristik $0$'dan farklı ise, aralarında asal olsun. Bu durumda, $$\text{Aut(E)}\to \text{Aut}(E[m])$$ şeklinde tanımlanan doğal fonksiyon $m\neq 2$ için birebir (injective) olmak durumunda. Eğer $m=2$ ise, yani $$\text{Aut(E)}\to \text{Aut}(E[2])$$ fonksiyonuna bakarsak bu durumda birebirlik elde edemiyoruz ve çekirdeğimiz (kernel) $[\pm 1]$ oluyor.

$m\neq 2$ için birebirliğin neden ve nasıl sağlandığını gösterebildim ama $m=2$ için çekirdek neden $[\pm 1]$ oluyor, bunu anlayamadım.

---

The Arithmetic of Elliptic Curves, J. H. Silverman, Alıştırma 3.12

---

Aslında bir $E$ eliptik eğrisi için $\text{Aut}(E)$ grubunun tüm durumlarda ne olduğunu biliyoruz, dolayısıyla bu soru gayet açık. Ama Silverman sorunun bu bilgiyi kullanmadan yapılabileceğini iddia ediyor.

6, Kasım, 2015 Akademik Matematik kategorisinde Enis (1,075 puan) tarafından  soruldu


Kullanmamiz gereken: $P \in E[2]$ oldugunda $P+P=0$ olacacindan $P=P$ olmasinin yani sira $P=-P$ de oluyor.

ispatini da ekleyebilir misin?

$[\pm 1]$ fonksiyonları tabii ki çekirdekte. Başka neden yok?

Cekirdekten bir $\sigma$ elemani alalim. $\sigma(P)=P$ olmali. Yani $\sigma: R \to (2k+1)R$ fonksiyonu olmali ki bu saglansin.  Bu durumda eger $2k+1 \ne \pm1$ ise $E[2k+1]$  ($\ne 0$) $\sigma$'nin cekirdeginde. Bu da otomorfizmayi bozar.

Tüm otomorfizmalar bir elemanı onun bir katına götürmek zorunda değil.

$\sigma(P)=P=3P=5P=\cdots$. olmali. Baska secenek var mi?

Var. Hatta complex multiplication denilen durum, tam da tamsayıyla çarpmadan daha fazlası olduğu zamanı anlatmak için kullanılan bir tabir.

Orada inanılmaz güzel bir teori var Lubin-Tate'e kadar giden. Milne'in internette bulabileceğin Class Field Thery notlarının içinde Lubin-Tate teoriyi anlattıktan sonraki tarihsel notlar kısmında bu complex multiplication'ın konuyla ilişkisini anlatıyor.

Benim demek istediğim $E[2]$'yi sabit bırakan otomorfizmalardı. Galiba şu an çok basit bir hatanın içersindeyim, -de sonra düşünmek istiyorum. Bakacam onlara, eyvallah yorumların için.

...