$a,b\in\mathbb{R}$ ve $a<b$ olmak üzere $(a,b)=\bigcup_{n\in\mathbb{N}}\left[a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right]$ olduğunu gösteriniz.

1 beğenilme 0 beğenilmeme
47 kez görüntülendi

$a,b\in\mathbb{R}$ ve $a<b$ olmak üzere

$$(a,b)=\bigcup_{n\in\mathbb{N}}\left[a+\frac{b-a}{4n},b-\frac{b-a}{4n}\right]$$

olduğunu gösteriniz.

5, Kasım, 2015 Lisans Matematik kategorisinde Russian (164 puan) tarafından  soruldu
26, Aralık, 2015 Russian tarafından düzenlendi

Soruyu tam olarak anlayamadım ama bir yorumum var.

Şimdi sayıların birleşimi için bir aralık verilmiş ve bu aralığın iki doğal sınırı var.

Bu doğal sınırların farkını alırsak, kümenin boyutu hakkında bir yorum yapabiliriz.

Bu örnekteki sınırları birbirinden çıkarırsak

$b-\frac{b-a}{4n}-a-\frac{b-a}{4n}$=$\frac{2n-1}{2n}(b-a)$ eşitlikteki ilk ifade her zaman 1 den küçük bir değerdir

o zaman

$(b-a)<1$ olduğu zaman doğal sınırların farkı da 1'den küçük bir değer alır

aynı şekilde $(b-a)>1$ olduğu zaman ise doğal sınırların farkı 1 den büyük bir değer alır.

Bu ifadelerde sayıların bulunduğu aralığı doğru bir şekilde ifade eder.


Buradaki sorunun cevabına benzer şekilde yapabilirsin.

1 cevap

0 beğenilme 0 beğenilmeme

Cozum yolu:

Bu araliklarin hepsi $(a,b)$'nin icindende oldugunu gosterirsek, $(a,b)$ bunlarin birlesimini icerdigini gostermis oluruz.

Diger taraftan ise $\lim\frac{b-a}{4n}=0$ oldugunu biliyoruz. Yapmamiz gereken $x \in (a,b)$ alip bu $x$ elemaninin bu kapali kumelerden birinin icine dusecegini yukaridaki limitin tanimi ile $(\epsilon>0$) gosterebiliriz.

6, Kasım, 2015 Sercan (22,513 puan) tarafından  cevaplandı
...