$y^2=x^3-a$ egrisinin uzerindeki noktalar

0 beğenilme 0 beğenilmeme
46 kez görüntülendi

$y^2=x^3-a$ egrisinin uzerindeki noktalarin sayisinin $p+1$ oldugunu gosteriniz. ($p$ asal ve $p \equiv 2 \: mod \: 3$)

5, Mart, 2015 Lisans Matematik kategorisinde Sercan (23,218 puan) tarafından  soruldu

bir başka deyişle bu eğrinin süpersingüler olduğunu göstermekle eşdeğer.. Bir teorem var oradan direk çıkar kanıt bulunca cevap olarak yazacağım.. 

evet haklisin ama bu egri o kadar komplike bir egri degil. Yanliz sunu belirteyim, karakteristik 2 de olabiliyor. Bazi teoremler var supersingular egriler icin ama tek asallar uzerinde cogu.

karakteristik 2 ve 3 için Silverman'ın apendix kısmında gerekli olan her bilgi var.. ayrıntılı bir cevap yazacağım :)

1 cevap

0 beğenilme 0 beğenilmeme

$p-1 \equiv 1\: \text{mod} \:3$ oldugundan $(p-1,3)=1$ olur, yani $x \rightarrow x^3$ fonksiyonu $\mathbb{F}_p$ uzerinde birebir orten bir fonsiyon olur. O halde  $x \rightarrow x^3-a$ da birebir orten bir fonsiyon olur. 

Ek olarak: $F_2$ de her sayi karedir ve $F_{tek}^*$'da da yarisi. (carpim grubunun dongusel oldugundan, direk gosterilebilir bunlar.)
Burdan $p+1$ ve $2(\frac{p-1}{2})+1+1=p+1$ nokta gelir.

 

6, Mart, 2015 Sercan (23,218 puan) tarafından  cevaplandı
...