Bileske fonksiyonlar: $f^{(n)}=f \circ \cdots \circ f$

0 beğenilme 0 beğenilmeme
34 kez görüntülendi

$f$ bir fonksiyon ve $n$ pozitif tam sayi olsun. $f^{(n)}=f \circ \cdots \circ f$ olsun, $n$ ader $f$ fonksiyonunun birlesimi. Bu sekilde birlesim tanimlayabiliyoruz. Peki $f^{(3/2)}$ gibi bir bileske fonksiyon tanimlayabilir miyiz? ya da $f^{(\pi)}$ gibi?

Ek: fonksiyonu $\mathbb R \to \mathbb R$ olarak dusunebiliriz.

20, Ekim, 2015 Serbest kategorisinde Sercan (23,218 puan) tarafından  soruldu
20, Ekim, 2015 Sercan tarafından düzenlendi

Yarım fonksiyonu nasil tanımlarım ki?

Ben de bunu soruyorum. Mesela yarin turev tanimlanabiliyor.

Bende çok merk ettim böyle bir şey var mı bana biraz fuzzy le alakalı gibi geldi.

nasil alakali geldi?

Karakteristik fonksiyon bazında düşündüm fuzzy kumelerin karakterstik fonksiyonlarinin birleskesi gibi 

Aslinda epey yaklasim olabilir. Mesela, $f(x)=x^2$ ise $h(x)=x^{\sqrt2}$ bunun yarim fonksiyonu olabilir. 

Farklı bi yaklaşımla fonksiyonun kısıtlanışına da diyebilirim

...