$|\text{Aut}_F (K)|\leq \text{dim}_F (K)$

0 beğenilme 0 beğenilmeme
49 kez görüntülendi

Diyelim $K$ cismi, $F$ cismi üzerindeki $f(x)$ polinomunun parçalanış cismi (splitting field) olsun. Bu durumda \begin{equation} |\text{Aut}_F (K)|\leq \text{dim}_F (K) \end{equation} eşitsizliği sağlanır. Dahası, eğer $f(x)$ polinomu ayrılabilirse, (separable) o zaman eşitlik sağlanır.

28, Şubat, 2015 Akademik Matematik kategorisinde Enis (1,075 puan) tarafından  soruldu

1 cevap

0 beğenilme 0 beğenilmeme

Kisa bi ispat olarak: (Burda da ispatlanmasi gereken cok sey olabilir.)

ilk olarak bu polinomu indirgenemez almamizda bi mahsur yok. 
indirgenemez ise koku koke goturdugumuz ve digerleri sabit her fonksiyon bir otomorfizma olur.
hatta tum bu otomorfizmalar koklerden gelir. o zaman ayrilabilirse esitlik saglanir.

Not: ilk basta bir koku sabitliyoruz.

28, Şubat, 2015 Sercan (23,805 puan) tarafından  cevaplandı
...