$4\Bbb Z \cup 10 \Bbb Z$ $\Bbb Z $'nin bir ideali olur mu?

0 beğenilme 0 beğenilmeme
78 kez görüntülendi

Aslında sorum şunlardan hangisi ideali değildir şeklindeydi. 

Bildigim kadariyla $\Bbb Z$'nin tüm idealleri $n\Bbb Z$ şeklinde

$(2\Bbb Z)(5\Bbb Z)=10\Bbb Z$ ideal

$3\Bbb Z+6\Bbb Z=3\Bbb Z$ ideal

$4\Bbb Z\cup8\Bbb Z=4\Bbb Z$ ideal

$7\Bbb Z$ ideal


son olarak $4\Bbb Z \cup 10 \Bbb Z$ elamanları 0,4,8,10,12,16,20... şeklinde degil midir? herhangi $a\in\Bbb Z$ alalım $\forall t \in4\Bbb Z \cup 10 \Bbb Z$ için $a.t\in 4\Bbb Z \cup 10 \Bbb Z$ değil midir?

21, Ağustos, 2015 Lisans Matematik kategorisinde hayati (76 puan) tarafından  soruldu
Idealin tanimi nedir?

2 Cevaplar

0 beğenilme 0 beğenilmeme
 
En İyi Cevap

ideal olmanin kosullarindan biri elemanlarin toplaminin iceride kalmasi: $10+(-8)=2$.

21, Ağustos, 2015 Sercan (23,213 puan) tarafından  cevaplandı
21, Ağustos, 2015 hayati tarafından seçilmiş
0 beğenilme 0 beğenilmeme

İki tane idealin kesişime de bir ideal olmak zorunda. Diğer taraftan aynı şeyi kesişimler için söylemek mümkün değil, bu örnekte görüldüğü gibi.

Diğer yandan, $I_1$ ve $I_2$ birer ideal olmak üzere, $I_1\cup I_2$ ifadesinin bir ideal olması için gerek ve yeter koşul, $I_1\subset I_2$ veya $I_2\subset I_1$, yani birinin diğerinin içinde olması.

O halde, $4\mathbb{Z}\cup 10\mathbb{Z}$ ifadesi ideal değildir, çünkü biri diğerinin içinde değildir.

21, Ağustos, 2015 Enis (1,072 puan) tarafından  cevaplandı

cevapları begenemiyorum acaba puanımdan dolayı mı

Sistemin nasıl çalıştığını tam bilmiyorum ama zannetmiyorum.

Nsky'nin vermiş olduğu cevap daha önce soru olarak verilmişti. Bunun ispatına da bakarsanız iyi olur hayati.
...