$\sum _{n=0}^{\infty }\dfrac {\sin \left( 2n+1\right) } {2n+1}=?$

2 beğenilme 0 beğenilmeme
126 kez görüntülendi


22, Temmuz, 2015 Lisans Matematik kategorisinde emilezola69 (618 puan) tarafından  soruldu
o soruyu hatırlıyorum da bu kadar benzer olduğunu hatırlamıyordum. birde yüksek lisans için önerilmişti önsözünde yanlış hatırlamıyorsam, ne bilmemiz gerektiğini istemiş okumak için tam yazılmamıştı, ya da ben bulamadım? inceleme şansın oldu mu?

Bir de su soruyu ekleyeyim, yorumlarda da guzel teknikler var: http://matkafasi.com/15328/%24-sum_-k-0-infty-1-k-dfrac2-2k-1-3-%24-toplaminin-degerini-bulunuz

$${\sin(2n+1)=\Im[e^{i(2n+1)}]}$$

olarak yazılırsa bir şeyler bulunabilir.

1 cevap

0 beğenilme 0 beğenilmeme

Daha önce buradaki soruda $\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}$ fonksiyonunun $[0,\pi]$ aralığındaki $x$ ekseni ile arasında kalan alanı hesaplamıştım.

Bu fonksiyonunun bir kaç özelliği var :

  • $2\pi$ periyotlu kare dalga .
  • $[0,\pi]$ aralığında $x$ ekseni ile arasında kalan alan $\frac{\pi^2}{4}$ olduğundan , (ilgili soruda çözüm mevcut) dalganın genliği $\frac{\pi}{4}$ .
  • Burada fonksiyonun yaklaşık bir grafiği var.


Soruda bizden istenen $\sum_{n=0}^\infty\:\frac{\sin(2n+1)}{2n+1}$ serisinin değeri.Yukarıda verdiğim bilgilerden yararlanarak bu serinin değerinin $\frac{\pi}{4}$ olduğunu söyleyebiliriz ($x$ yerine $1$ koyarak).

$$\boxed{\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}=\frac{\pi}{4}}$$

Kısaca yaptığımız iş : Seriyi çözmek için $f(x)=\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}$ şeklinde bir fonksiyon yazmak ve $x$ yerine $1$ vermek.Fonksiyon yukarıda yazdığım gibi kare bir dalga.Kare dalga olduğundan alabileceği iki değer var.Bu değerlerde genliktir.Fonksiyonun aldığı değerler $\frac{\pi}{4}$ ve $-\frac{\pi}{4}$.

Hatta çözümü daha da genişletilmiş bir halde yazalım :

$$\boxed{\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}=\begin{cases}\frac{\pi}{4}&0<x<\pi\\-\frac{\pi}{4}&\pi<x<2\pi\end{cases}}$$

14, Ağustos, 2015 bertan88 (1,122 puan) tarafından  cevaplandı
...