Kompakt uzay olma özelliği kalıtsal özellik midir?

0 beğenilme 0 beğenilmeme
54 kez görüntülendi

$(X,\tau)$ topolojik uzay olmak üzere

$`` ((X,\tau), \text{ kompakt uzay})(\emptyset\neq A\subseteq X) \Rightarrow (A,\tau_A), \text{ kompakt uzay}"$

önermesi doğru mudur? Yanıtınızı kanıtlayınız.

5, Ocak, 5 Lisans Matematik kategorisinde HakanErgun (163 puan) tarafından  soruldu
5, Ocak, 5 HakanErgun tarafından düzenlendi

1 cevap

0 beğenilme 0 beğenilmeme

$X=\mathbb{Z}\cup\{\sqrt 2,\sqrt 3 \}$  ve  $\tau=2^\mathbb{Z}\cup\{\mathbb{Z}\cup\{\sqrt 2 \},\mathbb{Z}\cup\{\sqrt 3 \} , X \}$ 

olmak üzere $(X,\tau)$ kompakt uzay olmasına karşın $A=\mathbb{Z}$ kümesi $\tau$-kompakt değildir. O halde 

$(A,\tau_A), \text{ kompakt uzay} \Rightarrow A, \ \tau\text{-kompakt} $ önermesinin karşıt tersinden $(\mathbb{Z},\tau_ \mathbb{Z})$ kompakt uzay değildir. O halde kompakt uzay olma özelliği kalıtsal bir özellik değildir.

7, Ocak, 7 HakanErgun (163 puan) tarafından  cevaplandı
8, Ocak, 8 murad.ozkoc tarafından düzenlendi
Fakat kompakt uzayların kapalı altuzayları kompakttır. Yani

$(X,\tau)$ topolojik uzay ve $A\subseteq X$ olmak üzere

$((X,\tau), \text{ kompakt uzay})(A\in\mathcal{C}(X,\tau)) \Rightarrow (A,\tau_A), \text{ kompakt uzay}$
...