$V=[x^2,xy,z-2x^2]$vektörünün tanımladığı kuvvet alanında bir partikül $3x^2+y^2-a^2=z$ ve $x^2+3y^2-3a^2+z=0$ yüzeylerinin arakesiti olan eğri üzerinde $A(a,0,a^2)$ noktasından başlayarak bir tam devir yapmaktadır.Yapılan işi bulunuz.

0 beğenilme 0 beğenilmeme
78 kez görüntülendi
Rotasyonel sıfırdan farklı çıkıyor tam diferansiyel olmadığı için bir kuvvet fonksiyonu elde edemedim. yardımcı olabilirseniz sevinirim.  
10, Aralık, 2018 Lisans Matematik kategorisinde kockurt (28 puan) tarafından  soruldu
12, Aralık, 2018 kockurt tarafından düzenlendi

Arakesit eğrisini parametrize etmeyi denediniz mi?

(Not: o nokta o yüzeyler üzerinde mi? $A(a,0,a^2)$ de bir yazım hatası var sanırım)

hocam soru bire bir yazdığım şekilde. noktayı o şekilde vermiş. silindirik koordinatlardan  çözüme gitmeye çalıştım. yapamadım. sizin takıldığınız noktayı tam olarak ben de anlayamadım. bu yüzden sordum. ilginiz için teşekkür ederim.

Arakesit eğrisini parametrize etmeyi denediniz mi?
İki denklemden $z$ yi yok ederek başlayabilirsin.

$A(a,0,2a^2)$ olunca arakesit eğrisi üzerinde oluyor.

1 cevap

1 beğenilme 0 beğenilmeme

$z=3x^2+y^2-a^2$, $z=-x^2-3y^2+3a^2$


${3x^2+y^2-a=-x^2-3y^2+3a^2} \Rightarrow {4x^2+4y^2-4a^2=0}$

$\Rightarrow {x^2+y^2=a^2}$ 

${x=a \cdot \cos t} \Rightarrow {dx=-a \cdot \sin tdt} $

${y=a \cdot \sin t} \Rightarrow {dy=a \cdot \cos t dt}$ 

$\begin{align}z&=3x^2+y^2-a^2=3 \cdot a^2\cos^2t+a^2 \sin^2t-a^2\\&=a^2(3\cos^2t+\sin^2t-1)=a^2(3\cos^2t-\cos^2t)=2a^2\cos^2t\end{align}$

$dz=-4a^2\sin t\cos tdt$ 

$T_{AB}=\int\limits_{a}^{b}\overrightarrow {X}dx+\overrightarrow {Y}dy+\overrightarrow {Z}dz$ 

$\begin{align}T_{AB}=\int\limits_{a}^{b}&[ (a^2\cos^2t)(-a\sin t)+(a\cos t)(a\sin t)(a\cos t)\\&+(2a^2\cos^2t-2a^2\cos^2t)(-4a^2\sin t\cos t)]dt\end{align}$ 

integralin içindeki ifadeler düzenlendiğim zaman $T_{AB}=\int\limits_{a}^{b} 0dt=0$ iş x birim 

olarak elde ettim. 

NOT: Latex kullanmayı bilmiyorum. Bu site sayesinde tanıştım ve bugün biraz kurcaladım.En azından düzenleme yapan arkadaşlara biraz kolaylık sağlarım düşüncesiyle bu kadar yazabildim. Anlayışınız için teşekkür ederim.

11, Aralık, 2018 kockurt (28 puan) tarafından  cevaplandı
12, Aralık, 2018 DoganDonmez tarafından düzenlendi

$\vec{T}\,dx=-3a^3\cos^2t \sin t$  oluyor (3 unutulmuş) sanırım.

çok özür dilerim hocam $\overrightarrow V$ vektörünün $\overrightarrow X$ bileşini $x^2$  olacak. düzelttim soruyu. 

...