$\mathbb{Z}$ üzerinde $R=\{(x,y)\mid x,y \in \mathbb{Z}\ \text{ve}\ y-x\in \mathbb{N}\}$ sıralama bağıntısına göre, $A=\{x\in \mathbb{Z}\mid x<7\}$ kümesi için sıralama bağıntısı olduğunu gösteriniz ve en küçük elemanını (varsa) bulunuz.

0 beğenilme 0 beğenilmeme
75 kez görüntülendi


1, Haziran, 2015 Lisans Matematik kategorisinde AysegulKose (85 puan) tarafından  soruldu
1, Haziran, 2015 Enis tarafından düzenlendi

AysegulKose sorunu tekrar kontrol eder misin? Bir de sorunu site kurallarına uygun bir şekilde yazar mısın?

<p> Murat bey site kurallarina uygun yazmayi denedim kac kere ama olmuyor o yuzden  elimden geldigince acik yazmaya calisiyorum
</p>

Ben teknik kısımları düzeltmeye çalıştım anladığım kadarıyla. Kodları inceleyerek neyin ne olduğunu anlamaya çalışabilirsiniz. Diğer yandan sorunun ifadesinde bir hata var gibi.

<p> Soruyu 4 kere kontrol ettim ama bi yanlislik yok. Bir test kitabindaki soru 
</p>

1 cevap

0 beğenilme 0 beğenilmeme

Tanım: $(X,\preceq)$ poset (Partially Ordered SET) ve $A\subset X$ olmak üzere

$$a=minA:\Leftrightarrow [(a\in A)\wedge (x\in A\Rightarrow a\preceq x)]$$

Yani $A$ kümesinin minimumunun $a$ olması için $a$'nın $A$ kümesinin elemanı olması ve $a$'nın $A$ kümesinin her elemanından önce gelmesi gerekiyor.

Bağıntının elemanlarını bulalım.

$$R=\{(x,y)\mid y-x\in \mathbb{N}\}=\{(x,y)\mid x\leq y\}\subset \mathbb{Z}^2$$

Yani bağıntı birinci bileşeni, ikinci bileşeninden küçük ya da eşit olan tamsayı ikililerinden oluşuyor. Buna göre $A$ kümesinin minimumu yoktur. Yani hem $A$ kümesinde olan hem de $A$ kümesinin her elemanından küçük ya da eşit olan bir eleman yoktur.

Eğer bağıntı

$$R'=\{(x,y)\mid x-y\in \mathbb{N}\}=\{(x,y)\mid y\leq x\}\subset \mathbb{Z}^2$$

şeklinde verilmiş olsaydı o zaman $A$ kümesinin minimumu $6$ olurdu.

1, Haziran, 2015 murad.ozkoc (8,886 puan) tarafından  cevaplandı

Sorunun soruluşunda yalnız bir yanlışlık var. Ben sadece $A$ kümesinin en küçük elemanı var mı sorusuna cevap verdim. Diğer kısımda ne sorulduğu bile belli değil.

...