Farklı rakamlardan oluşan, 3 basamaklı, rakamlarının toplamı 21 olan kaç sayı vardır?

0 beğenilme 0 beğenilmeme
49 kez görüntülendi
Farklı rakamlardan oluşan, $3$ basamaklı, rakamlarının toplamı $21$ olan kaç sayı vardır?

$A)14$
$B)18$
$C)22$
$D)24$
$E)30$
$cevap : 18$

İlk önce 9 elemanını sabitleyip diğerler iki elemanı hareket ettirdim.
$9,a,b$
$a+b = 12$
$a = 8 $ için $b = 4$
$a = 7 $ için $b = 5$
$a = 5 $ için $ b = 7$
$a = 4 $ için $ b = 8$
4 durum
ama 9 orta ve sonda olabileceğinden
$4.3 = 12$ durum

$8,a,b$
$a+b = 13$
$a = 7 $ için $b = 6$
$a = 6 $ için $b = 7$
2 durum
ve 8'in hareketlerinden
$2.3 = 6$

$7,a,b$
$a + b = 14$
ama $ max(a+b) = 11 => $$(5+6)$ 
,
buradan sonuç $12 + 6 = 18$ olur.

Benim sorum ise bunu böyle açmadan daha genel bir sonuca çevirmek.
Yani 
Farklı rakamlardan oluşan, $m$ basamaklı, rakamlarının toplamı $n$ olan kaç sayı vardır?
sorusunun cevabı.Biraz uğraştım fakat sonuç nafile.Yardım ederseniz sevinirim.
29, Nisan, 29 Orta Öğretim Matematik kategorisinde Ali münir aygün (31 puan) tarafından  soruldu

Sayıdaki her bir rakamın $4$ veya daha büyük olduğuna dikkat edelim.

"Farklı rakamlardan oluşan, m basamaklı, rakamlarının toplamı n olan kaç sayı vardır?"

Zor bir soru, farkli rakamlarla olmasa da... Genel olarak $$(x+\cdots+x^9)(1+x+\cdots+x^{9})^{m-1}$$ polinomunda $x^n$ katsayisini bulmaya calisabiliriz. Tabi burada rakamlar ayni da olabiliyor.

Rakamların farklı olma durumunu kaldırdığımızda bende dağılım'dan bir şeyler yaptım.

$ n = 1+1+1+.....+1 ($$n $ $tane 1)$

bu birleri ayraçlar ile ayırır isek $ m-1 $ adet ayraca ihtiyacımız olur.

buradan$\frac{(n+(m-1))!}{n!.(m-1)!}$ olur.

Sercan hocam dediğinizi burada açtım. ($m = 3$ için)

polynomial_expand  örneğin $x^{21}$ katsayısı: $28$ geliyor.

ilk başta sizin verdiğinizde bir hata olduğunu düşündüm fakat 

rakamları toplamı 11 olan kaç tane 3 basamaklı sayı vardır? buradaki destekledi.

Yani sıkıntı benimkinde ama nerede olduğunu bulamadım.

Manasi anlasilsin diye acik yazdim ifadeyi: $$\frac{x(x^9-1)(x^{10}-1)^{m-1}}{(x-1)^m}$$ olarak da yazilabilir. 



Bu ayrac islerinde usten 9 sinir oldugunu atlamissin. Ayrica ilk basamak da sifir olamaz, bunu da gozden kacirmamak gerekli.

...