Ortalama Değer Teoremi'ni kanıtlayınız.

0 beğenilme 0 beğenilmeme
53 kez görüntülendi

Ortalama Değer Teoremi: $a,b\in\mathbb{R}, \ a<b$  ve  $f\in \mathbb{R}^{[a,b]}$  olmak üzere

$$(f, \ [a,b]\text{'de sürekli})(f, \ (a,b)\text{'de türevli})$$

$$\Rightarrow$$

$$(\exists c\in (a,b))\left(f'(c)=\frac{f(b)-f(a)}{b-a}\right)$$

11, Nisan, 11 Lisans Matematik kategorisinde murad.ozkoc (8,818 puan) tarafından  soruldu
11, Nisan, 11 murad.ozkoc tarafından düzenlendi

Hocam bu Rolle Teoremi değil mi?

Düzelttim. Uyarın için teşekkür ederim.

1 cevap

0 beğenilme 0 beğenilmeme

$f$ fonksiyonun  $a$  ve  $b$   noktalarından geçen kirişini $g$ fonksiyonu ile gösterelim. Bu kirişin denklemi $$g(x)=\dfrac{f(b)-f(a)}{b-a}(x-a)+f(a)$$ şeklinde yazılabilir. $g$ bir doğru denklemi olduğundan verilen aralıkta sürekli ve türevlidir. Amacımız $f$ fonksiyonunun bu kirişine paralel en az bir teğeti olduğunu göstermek.Şimdi $$h(x)=f(x)-g(x)$$ fonksiyonunu oluşturalım. $f$  ve  $g$  fonksiyonları sürekli ve türevli olduğundan farkları olan $h$   fonksiyonu da türevli ve süreklidir. $h(a)=h(b)=0$   olduğundan Rolle teoremi sağlanacağından $(a,b)$  aralığında $h'(c)=f'(c)-g'(c)=0$  şartını sağlayan en az bir $c$ noktası mevcuttur. Buradan $$f'(c)=g'(c)=\dfrac{f(b)-f(a)}{b-a}$$ elde edilir.

12, Nisan, 12 alpercay (1,178 puan) tarafından  cevaplandı
Rolle Teoremi'ni kanıtlayınız.

Teoremdeki $[a,b]$ kapalı aralığında sürekli, $(a,b)$  aralığında türevli şartı neden verilmiştir? Yani uç noktalardaki kapalılık ve açıklık şartı neye hizmet ediyor?

Ayrıca da $[a,b]$ aralığının uç noktalarında (a'da soldan, b'de sağdan yaklaşamadığımız halde ) sürekli olduğunu nasıl söyleyebiliyoruz. Fonksiyon bu noktalarda neden türevsiz?

$f$ fonsiyonunun $[a,b]$ araliginda surekli olmasi, bu fonksiyonun $[a,b]$ araliginda turevli olmasini garantilemez.

Ornek: $f(x)=(x-2)^{\frac13}$  ve $[a,b]=[2,4]$ olsun. Bu fonksiyon $[2,4]$ araliginda sureklidir ama  turevi $f'(x)=\frac{1}{3(x-2)^\frac23}$        $x=2$ de turevli degildir(aslinda sol turtevi yok). Bundan dolayi. $f$  fonksiyonu   $(a,b)$  araliginda turevli sarti gerekli tanimda.

Teşekkür ederim sayın @Okkes Dulgerci. Bu fonksiyonun $x=2$ sol limiti var mı ki, biz bu noktada sürekli diyoruz.

@Mehmet Toktas, $f(x)$ fonksiyonunun tanim araligi $(-\infty,\infty)$  dur,  $[a,b]=[2,4]$ degil. Dolayisiyla $\lim_{x\rightarrow2^-}f(x)=\lim_{x\rightarrow2^+}f(x)=f(2)=0$  ve $f(x)$ fonsiyonu $x=2$ de surekli diyebiliriz. 

Verilen bir aralikta surekliligin tanimina bakmak lazim. Suraya gore sol limit ve sag limitin varligi gerekli degil.

http://faculty.swosu.edu/michael.dougherty/calc1/MD3-3.pdf

image

...