$\int\dfrac{2-u}{u^{2}-u+1} du$

0 beğenilme 0 beğenilmeme
28 kez görüntülendi

$\int\dfrac{2u-1}{u^{2}-u+1}du+\int\dfrac{3-3u}{u^{2}-u+1}du$

$\ln(u^{2}-u+1)+\cdots $

Integralde dönüşümleri yaptım yukarıya kadar geldim ama 2.ifadeyi yapamadım.

31, Mart, 31 Lisans Matematik kategorisinde Aliye (85 puan) tarafından  soruldu
31, Mart, 31 Sercan tarafından düzenlendi

Lutfen her ifadeyi sadece bir kere dolar isareti icerisine alalim. Duzenlemesi de zor oluyor. 

\$ tum-ifade \$

ya da

\$\$ tum-ifade \$\$ 

olarak...

1 cevap

0 beğenilme 0 beğenilmeme

(1) $u\in \mathbb R$ icin $f(u)=u^2-u+1$ olsun. Bu durumda $$f^\prime(u)=2u-1$$ olur. 

(2) Payi $a(2u-1)+b$ olarak yazmaya calisalim: $$2-u=-\frac{1}{2}(2u-1)+\frac{3}{2}$$ olur. 

(3) Dolayisiyla ifade $$-\frac12 \int \frac{2u-1}{u^2-u+1}du+\frac32\int\frac{1}{u^2-u+1}du$$ olur. 

(4) Ilkinde $\ln$ iceren ikincisinde ise $\arctan$ iceren bir ifade gelecek. Bunlari bulmalisin.

31, Mart, 31 Sercan (23,572 puan) tarafından  cevaplandı
...