$\int\dfrac{2-u}{u^{2}-u+1} du$

0 beğenilme 0 beğenilmeme
65 kez görüntülendi

$\int\dfrac{2u-1}{u^{2}-u+1}du+\int\dfrac{3-3u}{u^{2}-u+1}du$

$\ln(u^{2}-u+1)+\cdots $

Integralde dönüşümleri yaptım yukarıya kadar geldim ama 2.ifadeyi yapamadım.

31, Mart, 2018 Lisans Matematik kategorisinde Zeynoo (94 puan) tarafından  soruldu
31, Mart, 2018 Sercan tarafından düzenlendi

Lutfen her ifadeyi sadece bir kere dolar isareti icerisine alalim. Duzenlemesi de zor oluyor. 

\$ tum-ifade \$

ya da

\$\$ tum-ifade \$\$ 

olarak...

1 cevap

0 beğenilme 0 beğenilmeme

(1) $u\in \mathbb R$ icin $f(u)=u^2-u+1$ olsun. Bu durumda $$f^\prime(u)=2u-1$$ olur. 

(2) Payi $a(2u-1)+b$ olarak yazmaya calisalim: $$2-u=-\frac{1}{2}(2u-1)+\frac{3}{2}$$ olur. 

(3) Dolayisiyla ifade $$-\frac12 \int \frac{2u-1}{u^2-u+1}du+\frac32\int\frac{1}{u^2-u+1}du$$ olur. 

(4) Ilkinde $\ln$ iceren ikincisinde ise $\arctan$ iceren bir ifade gelecek. Bunlari bulmalisin.

31, Mart, 2018 Sercan (23,868 puan) tarafından  cevaplandı
...