Süreklilik Üzerine-III

0 beğenilme 0 beğenilmeme
71 kez görüntülendi
$A\subseteq \mathbb{R}, \ f\in\mathbb{R}^A$  ve  $a\in A\cap D(A)$ olmak üzere
$$f, \ a\text{'da sürekli}\Leftrightarrow \lim\limits_{x\to a}f(x)=f(a)$$ olduğunu gösteriniz.

Not: $D(A):=\{x|x, A\text{'nın yığılma noktası}\}$
4, Mart, 4 Lisans Matematik kategorisinde murad.ozkoc (8,886 puan) tarafından  soruldu
17, Nisan, 17 murad.ozkoc tarafından düzenlendi

normal tanımdan ne farkı var hocam

Şu linke bir göz at Anıl. Sonra gerekirse yine tartışırız.

Tanımı şöyle veriyoruz Anıl.

Tanım (Noktasal Süreklilik): $A\subseteq \mathbb{R}$, $f\in \mathbb{R}^A$  ve  $a\in A$ olmak üzere

$$f, a\text{'da sürekli}$$

$$:\Leftrightarrow$$

$$ (\forall \epsilon >0)(\exists \delta >0)(\forall x\in A)(|x-a|<\delta \Rightarrow |f(x)-f(a)|<\epsilon)$$

$$$$

Tanım (Yaygın (Global) Süreklilik): $A\subseteq \mathbb{R}$ ve $f:A \rightarrow \mathbb{R}$ fonksiyon olmak üzere

$$f, (A\text{'da}) \text{ sürekli}$$

$$:\Leftrightarrow$$

$$(\forall a\in A)(f, a\text{'da sürekli})$$

$$:\Leftrightarrow$$

$$(\forall a\in A)(\forall \epsilon >0)(\exists \delta >0)(\forall x\in A)(|x-a|<\delta \Rightarrow |f(x)-f(a)|<\epsilon)$$

1 cevap

0 beğenilme 0 beğenilmeme
$(\Rightarrow):$ $f, \ a\text{'}$da sürekli ve $\epsilon>0$ olsun.

$\left.\begin{array}{rr} \epsilon>0 \\ f, \ a\text{'da sürekli} \end{array}\right\}\Rightarrow (\exists\delta>0)(A\cap (a-\delta,a+\delta)\subseteq f^{-1}[(f(a)-\epsilon,f(a)+\epsilon)])$ 

$\Rightarrow (\exists\delta>0)(A\cap [(a-\delta,a)\cup (a,a+\delta)]\subseteq f^{-1}[(f(a)-\epsilon,f(a)+\epsilon)])\Big{/}\lim\limits_{x\to a}f(x)=f(a).$

$------------------------------------$

$(\Leftarrow):$ $\lim\limits_{x\to a}f(x)=f(a)$ ve $\epsilon>0$ olsun.

$\left.\begin{array}{rr} \epsilon>0 \\ \lim\limits_{x\to a}f(x)=f(a) \end{array}\right\}\Rightarrow (\exists\delta>0)(A\cap [(a-\delta,a)\cup (a,a+\delta)]\subseteq f^{-1}[(f(a)-\epsilon,f(a)+\epsilon)])$

$\Rightarrow (\exists\delta>0)(A\cap (a-\delta,a+\delta)\subseteq f^{-1}[(f(a)-\epsilon,f(a)+\epsilon)])\Big{/} f, \ a\text{'da sürekli.}$
5, Mart, 5 murad.ozkoc (8,886 puan) tarafından  cevaplandı
...