$x$ pozitif gerçel bir sayıdır $\dfrac {1-\sqrt {x}} {\left( 1+\sqrt [4] {x}\right) \left( 1+\sqrt [8] {x}\right) \left( 1+\sqrt [16] {x}\right) \left( 1+\sqrt [32] {x}\right) }$ ifadesinin sadeleştirilmiş biçimi ?

0 beğenilme 0 beğenilmeme
63 kez görüntülendi

paydadaki katlardan parantez işlemi var kısa bir yol veya ne biliyim genelde değer vererek çözüyorum bu tarz soruları ama.. Bunun için pek etkili olmadı

12, Ocak, 2017 Orta Öğretim Matematik kategorisinde mosh36 (2,125 puan) tarafından  soruldu

2 Cevaplar

1 beğenilme 0 beğenilmeme
 
En İyi Cevap

http://matkafasi.com/72364/iki-kare-farkinin-zevkli-formuluzasyonunun-fantezizasyonu?show=72364#q72364

oldugundan yola çıkarak,

$\sqrt[32]{x}=a$ olsun

$\dfrac {1-a^{16}} {\left( 1+a^8\right) \left( 1+a^4\right) \left( 1+a^2\right) \left( 1+a\right) }$


ve $\left( 1+a^8\right) \left( 1+a^4\right) \left( 1+a^2\right) \left( 1+a\right)=K $

$(1-a)K=(1-a^{16})$ olur dolayısıyla;

$\dfrac {1-\sqrt {x}} {\left( 1+\sqrt [4] {x}\right) \left( 1+\sqrt [8] {x}\right) \left( 1+\sqrt [16] {x}\right) \left( 1+\sqrt [32] {x}\right) }=\dfrac{1-a^{16}}{\frac{1-a^{16}}{1-a}}=1-a=1-\sqrt[32]{x}$ 

12, Ocak, 2017 Anıl Berkcan Turker (7,748 puan) tarafından  cevaplandı
12, Ocak, 2017 mosh36 tarafından seçilmiş

$(1-a)K$ yaparken şunu yaptım,

$\left( 1+a^8\right) \left( 1+a^4\right) \left( 1+a^2\right) \left( 1+a\right)=K$  hertarafı 1-a ile çarp

$\left( 1+a^8\right) \left( 1+a^4\right) \left( 1+a^2\right) \underbrace{\left( 1+a\right)(1-a)}_{1-a^2}=K(1-a)$

aynı mantıkla 1-a^2 ve 1+a^2 çarpımı 1-a^4 olur 2kare farkından....

dostum eline koluna sağlık çok teşekkür ederim.

rica ederim   :)

1 beğenilme 0 beğenilmeme

Benim aklıma da direk şöyle bir çözüm yolu geldi:

(Payı ve paydayı $( 1-\sqrt [32] {x})$ ile çarpalım ve paydada iki kare farkı uygulayalım.)

$$\dfrac {(1-\sqrt {x})( 1-\sqrt [32] {x})} {\left( 1+\sqrt [4] {x}\right) \left( 1+\sqrt [8] {x}\right) \left( 1+\sqrt [16] {x}\right) \left( 1+\sqrt [32] {x})( 1-\sqrt [32] {x}\right) }$$

$$=$$

$$\dfrac {(1-\sqrt {x})( 1-\sqrt [32] {x})} {\left( 1+\sqrt [4] {x}\right) \left( 1+\sqrt [8] {x}\right) \left( 1+\sqrt [16] {x}\right) \left( 1-\sqrt [16] {x}\right)}$$

$$=$$

$$\dfrac {(1-\sqrt {x})( 1-\sqrt [32] {x})} {\left( 1+\sqrt [4] {x}\right) \left( 1+\sqrt [8] {x}\right) \left( 1-\sqrt [8] {x}\right)}$$

$$=$$

$$\dfrac {(1-\sqrt {x})( 1-\sqrt [32] {x})} {\left( 1+\sqrt [4] {x}\right) \left( 1-\sqrt [4] {x}\right)}$$

$$=$$

$$\dfrac {(1-\sqrt {x})( 1-\sqrt [32] {x})} {\left( 1-\sqrt {x}\right)}$$

$$=$$

$$1-\sqrt [32] {x}$$
12, Ocak, 2017 mervekendince (509 puan) tarafından  cevaplandı
12, Ocak, 2017 mervekendince tarafından düzenlendi

güzel :) eline sağlık teşekkür ederim

rica ederim, iyi çalışmalar.

...